
# ポリウレアとは

ポリウレア樹脂とは、イソシアネートとポリアミンの化学変化によって形成された樹脂化合物です。硬化時間が数秒~十数秒と極めて早く、防水性・耐薬品・耐摩耗・耐熱に優れ、様々な変状要因から基材を保護するライニング材です。また400%以上の伸び率を有しているグレードもあり、下地のひび割れの発生や挙動に対して高い追随性を発揮すると共に、軍事施設やプラント設備、主要建物の防爆対策としても注目されています。











## 1,優れた柔軟性と強度

ポリウレアの最大の特徴は強度と柔軟性です。

400%(ST)という高い伸び率を持ち、従来の硬質ライニングではなし得なかった基材の形状変化に追従し、特にコンクリートのクラックには割れることなく追従します。

## 2, 施工が早い、硬化が速い

スプレー塗布による施工で1日当たり数百㎡の施工が可能。吹付 け後、硬化に要する時間は数十秒~数分で、施工後数時間で歩行 可能、条件によっては数時間で供用可能です。



## 3,優れた耐薬品・防食性

激しい摩耗、薬品・海水による腐食、熱影響、衝撃による割れなど様々な劣化要因が複合して起きる環境下において、ポリウレアはその特性を発揮し、長期間基材を保護し続けます。耐薬品性能の高いグレードでは 50% 硫酸への長期耐性を有し、腐食要因(酸・アルカリ等)から基材を保護します。

また JIS 規格、塗料摩耗試験においても試験後塗膜損耗量 3mg (ST) と他のライニング材料に比較して格段の耐摩耗性を有します。またその高い耐候性から、屋外でも長期間安定した強度を発揮します。

速乾 短工期

無溶剤

優れた 強度 優れた 耐性

高耐候性



# 目的と用途



## 耐薬品腐食性

### 主な用途

薬品タンク、 防液堤、排水槽、 各種化学プラント設備

## 耐爆耐衝擊性

### 主な用途

薬品タンク、 防液堤、排水槽、 各種化学プラント設備





## 防水性

主な用途 地下ピット、 コンクリート水路、 建屋屋上防水

## 耐摩耗性

主な用途

工場床面、ダム、 畜産設備、鉱山設備



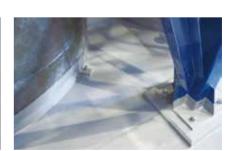
## 耐熱性

主な用途 温水ピット、 低温・冷凍倉庫



NUKOTEポリウレアは、防水性はもちろんのこと、激しい摩耗、薬品・海水による腐食、熱影響、衝撃による割れなど様々な劣化要因が複合して起きる環境下において特性を発揮し、長期間基材を保護し続けます。

# 主な実績


主な実績として、発電所、化学工場等の排水ピットや、タンク内面ライニング、防液堤、 床面ライニングが挙げられます。その他にも、屋上緑化や、スレート屋根補強、塩害対策、 剥落防止等、ポリウレアの強みを生かして様々な施工が可能です。



発電所ピット内面



製鉄所排酸槽内面



化学工場床面防水



自動車工場タンク内面



食品工場床面



化学工場水路内面











専用塗布機を用いて加温吹付けにて 施工する一般的なポリウレア。強度、 各種耐性に優れています。

常温で硬化する吹付け型ポリウレア。 簡易ガンで施工でき、小規模施工に 最適です。

ローラー、刷毛等で施工できるポリ ウレア。タッチアップや、小規模施 工に最適です。

下地によってプライマーを使い分けることで、長期的にしっかりと接着 を維持できます。

※ ポリウレアやプライマーの種類によっては日本に在庫のないグレードもございます。
また NUKOTE 社はカタログに記載している商品以外にもいくつかの特徴的なグレードを有しております。詳しくは担当者にお問い合わせ下さい。

### 加温型吹付けポリウレア

使用塗布機

・グラコ製 E-XP2 / E-10hp リアクター

加温吹付けタイプは専用の塗布機を用いて施工を行います。あらかじめ装置内部で材料を加温し、(材料によって異なるが、70℃程度) ガンの先端で A 液と B 液を混合させ、対象物に吹付けをします。吹付け後数十秒で硬化定着します。







| グレード<br>(品番)      | 特徴      | 属性     | 耐熱性               | 引張強度<br>(N/mm³) | 伸び<br>(%) | ショア硬度<br>(N/mm <sup>i</sup> ) | 共用温度<br>(℃) | 硬化時間<br>(秒) |
|-------------------|---------|--------|-------------------|-----------------|-----------|-------------------------------|-------------|-------------|
| NUKOTE<br>ST      | 標準型     | 芳香族    | 気体 120℃<br>液体 85℃ | 20              | 400       | 47                            | -30~120     | 15~45       |
| NUKOTE<br>XT-Plus | 耐薬品性能型  | 改良型芳香族 | 気体 120℃<br>液体 85℃ | 12              | 80        | 47                            | -30~120     | 5~15        |
| NUKOTE<br>AL      | 耐紫外線型   | 脂肪族    | 気体 60℃            | 20              | 300       | 50                            | -30~60      | 10~30       |
| NUKOTE<br>FR      | 難燃型     | 芳香族    | 気体 120℃<br>液体 85℃ | 11              | 45        | 45                            | -30~120     | 5~15        |
| NUKOTE<br>HT      | 高強度型    | 芳香族    | 気体 120℃<br>液体 85℃ | 23              | 375       | 50                            | -30~120     | 15~45       |
| NUKOTE<br>CG      | ハイブリット型 | 芳香族    | 気体 120℃<br>液体 85℃ | 18              | 200       | 55                            | -30~120     | 10~30       |

### 塗布システム

- ①リアクター
- ②加温ホース
- ③加温手元ホース
- ④Fusion スプレーガン
- ⑤ドラムポンプ
- ⑥撹拌装置
- ⑦還流ホース





装置内のヒーターで 加温 (ST の場合70℃) した状態で吹付け。

トラック内に機械を積載し 現場までホースを伸ばして吹付け。



トラック内写真



### **常温硬化型ポリウレア** 使用塗布機 ・グラコ製 E-8/E-10 リアクター

・カートリッジガン

常温吹付け型 NUKOTE ポリウレアLPは材 料を事前に加温する必要がないため、比較的 簡易な塗布機での施工が可能です。また、カー トリッジガンを使用することで注入形式で使 用することも可能です。







| グレー<br>(品番  |    | 特徴    | 属性  | 耐熱性               | 引張強度<br>(N/mm³) | 伸び<br>(%) | ショア硬度<br>(N/m㎡) | 共用温度<br>(℃) | 硬化時間<br>(秒) |
|-------------|----|-------|-----|-------------------|-----------------|-----------|-----------------|-------------|-------------|
| NUKOT<br>LP | ГЕ | 低圧塗布型 | 芳香族 | 気体 100℃<br>液体 70℃ | 15              | 225       | 45              | -30~100     | 45~90       |

## 

手塗り型ポリウレアは専用機械を必要とせず、刷毛・ローラなどで施工が簡易に出来るため、 手軽にポリウレアを取り扱う事が可能です。それぞれに伸び率・強度・可使時間及び硬化時間・ 耐候性などの違った特徴があります。詳しくは担当者にご相談ください。



| グレード<br>(品番)    | 特徵      | 属性    | 容積比            | 引張強度<br>(N/mm³) | 伸び<br>(%) | ショア硬度<br>(N/mm <sup>*</sup> ) | ゲルタイム<br>(分) | 硬化時間<br>(時間) |
|-----------------|---------|-------|----------------|-----------------|-----------|-------------------------------|--------------|--------------|
| NUKOTE<br>JF-HM | 手塗り型    | 変性脂肪族 | A : B<br>7 : 1 | 13              | 600       | 30                            | 5~10         | 5~6          |
| NUKOTE<br>BG    | 手塗り型    | 芳香族   | A : B<br>4 : 1 | 10              | 900       | 20                            | 15~30        | 36~48        |
| NUKOTE<br>PA    | 高意匠性手塗り | 脂肪族系  | A : B<br>1 : 1 | 18              | 30        | 60                            | 20~30        | 8~24         |

## プライマー

接着性が非常に優れるプライマー。塗布対象や使用目的に合わせてご提案。詳しくは担当者にご相談ください。

| グレード<br>(品番)   | 特徴      | 用途                | 属性    | 可使時間<br>(25℃)        | 硬化時間<br>(25℃) | 再塗布<br>(25℃)          | 塗布方法               | 混合比<br>(容積比)   |
|----------------|---------|-------------------|-------|----------------------|---------------|-----------------------|--------------------|----------------|
| EP Prime I     | 標準2液    | コンクリート<br>金属      | エポキシ系 | 60 <sub>min</sub>    | 4~6hr         | 18hr                  | 刷毛<br>ローラー等        | A : B<br>1 : 1 |
| Poly Prime I   | 速乾2液    | コンクリート<br>金属      | ウレタン系 | 5~10 <sub>min</sub>  | 15~30 min     | 60~120 <sub>min</sub> | 吹付け<br>刷毛<br>ローラー等 | A : B<br>1 : 1 |
| Metal Prime II | 標準2液    | 金属                | エポキシ系 | 20~30 <sub>min</sub> | 4~5hr         | 18 <sub>hr</sub>      | 刷毛<br>ローラー等        | A: B<br>2:1    |
| AE T7          | 超速乾 1 液 | 層間、FRP<br>PVC、その他 | _     | _                    | 5~15 min      | 15 <sub>min</sub>     | 吹付け<br>刷毛<br>ローラー等 | 1 液            |
| AE T7 LF       | 速乾1液    | 層間、FRP<br>PVC、その他 | -     | -                    | 15~25 min     | 90 <sub>min</sub>     | 吹付け<br>刷毛<br>ローラー等 | 1液             |

# ポリウレアの仕様(一般例)

ポリウレア施工の際は、目的・用途や下地によってプライマー等の仕様を組み合わせます。

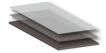
### コンクリートの場合

旧塗膜・付着物除去後、ケレン・脱脂を行います。適切なプライマーを塗布し、下地 の状況によってはパテ材などを使用する事で不陸調整、ピンホールの発生を抑えます。 ポリウレアについては用途に応じて、種類・塗布厚みが異なります。また芳香族のポ リウレアを塗装した場合は、状況に応じてトップコートの使用を推奨しています。

### 金属下地の場合

旧塗膜除去後、ケレン・脱脂を行います。金属面の下地や錆の状態によっては、錆転 換剤などで黒錆に変えた後、適切プライマーを塗布してください。ポリウレアについ ては用途に応じて、種類・塗布厚みが異なります。また芳香族のポリウレアを塗装し た場合は、状況に応じてトップコートの使用を推奨しています。




組合せ



ポリウレア プライマー コンクリート



トップコート ポリウレア パテ材 プライマー コンクリート



ポリウレア プライマー 全屋



トップコート ポリウレア プライマー 錆転換剤など

# ポリウレアの施工手順(一般例)

### 1、下地処理

既設コンクリートの場合は、脱脂・ケレンや脆弱部等の除去、クラック欠損 の補修。金属面の場合は、脱脂・ケレンや状況により錆の撤去等を行います。

### 2、プライマー塗布

塗布下地や、用途によって適切なプライマーを選定。下地によっては、 この工程を省略する場合もありますが、基本的には必須事項となります。

下地がコンクリートの場合、状況や目的用途により、パテ材等での不陸調整。

### 3、ポリウレア塗布

ポリウレアを適正な塗布厚みにて塗布を行います。(吹付け、手塗り)

### 4、トップコート塗布

目的に応じてトップコートを塗布することも可能。 また、耐火塗料や、遮熱塗料との組み合わせも可能です。





# ポリウレアの混合システム(タイプ別)

### 加温型吹付けポリウレア

専用ガンを使用して、 衝突混合にて吹付け。 圧力で材料を吹付ける ため硬化が早く、強度 のある強い塗膜が素早 く 形成されます。



### 常温硬化型ポリウレア

スタティックミキ サーを使用して、混 合。先端にエアー チップを取り付ける ことで押し出された 材料をエアーの力で



### 手塗り型ポリウレア

重量計を使用して、適切 な混合比率にて混合撹 拌。材料混合比率は別途 資料を参照ください。 A材B材は事前にしっ かりと撹拌をお願い致し







# 試験データ

### 耐薬品性能試験データ

試験規格:ASTM D3912 を流用 (重量変化) ○=推奨できる △=条件付きで推奨

|            | -   | •           |         |             |             |
|------------|-----|-------------|---------|-------------|-------------|
| 浸漬薬品名      | 濃度  | ST          | XT-Plus | LP          | PA          |
| 塩酸         | 10% | 0           | 0       | 0           | 0           |
| 塩取         | 15% | ×           | 0       | ×           | ×           |
| 硫酸         | 15% | 0           | 0       | 0           | 0           |
| が旧せる       | 50% | ×           | 0       | ×           | ×           |
| リン酸        | 10% | 0           | 0       | 0           | 0           |
| リン畝        | 15% | ×           | 0       | ×           | ×           |
| 酢酸         | 10% | 0           | 0       | 0           | $\triangle$ |
| 硝酸         | 25% | ×           | 0       | ×           | ×           |
| フッ化水素      | 10% | ×           | 0       | ×           | ×           |
| 海水         |     | 0           | 0       | 0           | 0           |
| 下水         |     | 0           | 0       | 0           | 0           |
| 水 (80℃)    |     | 0           | 0       | 0           | 0           |
| 脱イオン水 (純水) |     | 0           | -       | 0           | -           |
| 軽油・ガソリン    |     | 0           | 0       | 0           | 0           |
| 油圧油、作動油    |     | 0           | 0       | 0           | 0           |
| 過塩素酸       |     | -           | 0       | -           | -           |
| クエン酸       | 5%  | -           | -       | -           | 0           |
| 洗剤         |     | -           | -       | -           | 0           |
| 水酸化ナトリウム   | 20% | 0           | 0       | 0           | 0           |
| (苛性ソーダ)    | 50% | Δ           | 0       | $\triangle$ | -           |
| 水酸化アンモニウム  | 20% | 0           | 0       | 0           | 0           |
| 小阪にアンモニソム  | 50% | $\triangle$ | 0       | $\triangle$ | $\triangle$ |
| 水酸化カリウム    | 10% | 0           | 0       | 0           | 0           |
| 小政化ガックム    | 20% | $\triangle$ | 0       | $\triangle$ | $\triangle$ |
| 重炭酸ソーダ(重曹) | 30% | -           | 0       | -           | -           |
| 次亜塩素酸ナトリウム | 14% | -           | 0       | -           | -           |
| 水酸化カルシウム   | 30% | -           | 0       | -           | -           |
| 硫化水素 (ガス)  |     | 0           | 0       | 0           | 0           |
| 過酸化水素      |     | -           | 0       | -           | -           |
|            |     |             |         |             |             |

※ 耐薬品性能の確認は温度との相関も含めて、 事前の浸漬試験を推奨しております。詳しくは担当者にご相談下さい。

### テーバー式摩耗試験結果(CS-17)

試験規格:ASTM D4060 試験回転数:1000 回 摩耗輪の種類:CS-17 荷重:9.81 N(1 kgf)

| グレード         | ST | XT-Plus | AL | LP | РА |
|--------------|----|---------|----|----|----|
| 摩耗減量<br>(mg) | 8  | 20      | 35 | 30 | 25 |

## テーバー式摩耗試験結果(CS-10)

試験規格: JIS K 5600-5-9:1999 試験回転数: 1000回 摩耗輪の種類: CS-10 荷重: 9.81 N (1 kgf)

| グレード         | ST | XT-Plus | BG |
|--------------|----|---------|----|
| 摩耗減量<br>(mg) | 3  | 14      | 3  |

### 酸素指数による難燃性の試験結果

試験規格: JIS K 7201-2 2007

難燃性の目安:

22 以下 可燃性物質

23 ~ 27 自己消火性物質 27 以上 難燃性物質 グレード FR 酸素指数 30.7

# カラーバリエーション

### スタンダードカラー



### セカンドカラー



※ 色見本はあくまで参考です。印刷の都合上、実際の発色と異なります。 また、セカンドカラーに関しましては、別途調色費用を頂戴致します。 ナチュラル色・セカンドカラーにつきましては、納期がかかる場合がございます。また、調色不可のグレードもございます。(JF-HM,BG)

# NUKOTE(ニューコート) 社について

ニューコート・コーティングシステムズ・インターナショナル (NCSI) は、アメリカ合衆国テキサス州のヒューストンに拠点を置き、この世界的な事業のマネジメント業務を遂行しています。現在、カリフォルニア州・テキサス州の2つの工場で製造しています。

ニューコート製品は 25 の国でそれぞれの基幹代理店によって販売されており、各地域の認定された施工チームと連携して世界中のどこでも直接業務支援が行える体制を取っています。ニューコートは様々な場面に適応できる優れた高分子ポリマーによるコーティング・ライナー製品を製造しています。純粋なポリウレア、改良型ポリウレア、ポリウレタン、セラミック・金属複合ポリマーと幅広い製品を ISO,CE,ASTM の規格に基づいて製造しており、各種生産工場、港湾、製油、ガス、商業施設建築、石油化学、娯楽施設建築など幅広い分野で施工実績を有しております。

金森藤平商事株式会社は2010年にニューコート社と日本における独占販売契約を締結し、 日本総代理店として国内外のお客様に広くニューコート製品を販売しております。













### ● 製造元

## **Nukote Coating Systems International**

4730 Consulate Plaza Drive, Suite 100 Houston, Texas USA 77032

TEL: +1.832.770.7100 FAX: +1.281.227.0909

## ● 日本総販売元

### 金森藤平商事株式会社

新規事業推進チーム

〒104-0028 東京都中央区八重洲 2-11-4

TEL: 03-3275-1181 FAX: 03-3274-5818

WEB: http://polyurea.jp/

## 本製品に関するお問い合わせ、ご用命は